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Abstract

The vertical gradient of normal gravity (VGNG) plays a significant role in several applications and is an
interesting quantity from a pure theoretical point of view as well. In this work the VGNG will be studied from a
theoretical point of view, therefore the expression of the VGNG at a point P on the Earth’s physical surface in
geodetic coordinates is presented. Since the value VGNG also depends on the mean curvature of the normal
equipotential surfaces, an effort has been made to express the fundamental quantities EY, F¥, GY, LY, MY and
NY at point P in a specific form. These quantities are expressed as combinations of the fundamental quantities of
the ellipsoid of revolution, its mean curvature, Gauss curvature, and normal reduction. The fundamental
quantities of the ellipsoid of revolution are determined at a point Q which is the projection of a point P, on the
ellipsoid along the vertical line.

The fundamental quantities of the ellipsoid, its mean curvature and Gauss curvature and the geometric height of
the chosen point P represent the geometric part of the quantities EY, FY, GY, LY, M" and N". The value of the
normal reduction at point P represents the physical part of those quantities (i.e. EY, FY, GY, LY, M"Y and NY).
The aforementioned fundamental quantities are very complicated functions expressed in geodetic coordinates.
Thus we deduce that the significant complexity of the geometry of the normal equipotential surfaces results in
an equivalent complexity of VGNG as a function of geodetic coordinates. Finally the effect of the geometry of

the ellipsoid of revolution on the VGNG is examined.
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I.  Introduction

The vertical gradient of gravity (VGG) is a significant quantity in Geophysics and Geodesy. It shows
that the variation of gravity at a chosen point P along the direction of the plumbline depends on physical
quantities (Earth’s mean angular velocity, and gravity magnitude) and a geometric quantity. The geometric
quantity is the mean curvature of the equipotential surface at point P. The expression of the vertical gradient of
gravity shows an elegant relation between Geometry and Physics.

The value of the VGG can be estimated practically (Vajda et al, 2015) by relative gravity meters
observing on the ground and at a certain height above the benchmark. For example, it is necessary for the
determination of the Deformation Induced Topographic Effect. The value of VGG (Zahorec et al, 2016) can be
used to reduce gravity readings to the ground or to a common level in order to compare measurements from
various types of gravity meters (relative and / or absolute ones). This procedure is necessary to avoid significant
systematic errors. In the same paper, it discusses the significance of the VGG for volcano monitoring. Another
example of high precision of VGG determination can be found in (Repani¢ et al, 2015).

Interesting applications which make use of VGG (Panisova and Pasteka, 2009) can be found in
archaeology, such as the detection of subsurface cavities (for example air filled cavities, water filled cavities),
crypts, cellars and tunnels in churches and castles.

In Geodesy (Hackney and Featherstone, 2003) to compute gravity anomaly at the geoid requires the
knowledge of the VGG. Gravity anomaly is necessary for the determination of geoid undulation using Stokes’
formula.

The vertical gradient of normal gravity (VGNG) - or “free — air” correction - is used to partly
downward or upward continue observed gravity to the geoid. As a linear approximation the value of 0, 3086
mgal/m (at geodetic latitude ¢ = 45° on the surface of the ellipsoid of revolution) is used. A second order
approximation takes into account the oblate elliptical shape of the Earth. In this work the expression of the
VGNG in geodetic coordinates at a point P on the Earth’s physical surface will be presented. This effort will
shed some light to the problem of finding a general expression for VGNG in geodetic coordinates. The variation
of VGNG along the vertical line to the ellipsoid passing through point P depends also on the variation of the
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mean curvature of the normal equipotential surfaces. For this reason an effort has been made in order to express
the fundamental quantities EY, F¥, GV, LY, M" and NV of the normal equipotential surfaces as combinations of
the fundamental quantities of the ellipsoid of revolution (in the sequel it will be referred as “ellipsoid”) .

In section 2 the quantities of the first fundamental form of a normal equipotential surface U = Up will
be determined (at point P), and in section 3 the quantities of the second fundamental form will be determined.
Finally, in section 4 the results will be tabulated and some conclusions will be discussed in section 5.

Il.  Methodology, quantities of the first fundamental form
Let a point P on the Earth’s physical surface with geodetic coordinates (@p, Ap, hp). In addition let

e

§° i (p, — 5., +68)x (Ay —A, A, + ) > R (4, 2) > §°(4,2)

e ( a’ a’ . b . )
s (g, 1) = cos ¢ cos A, cos ¢ sin A, ——————==5in ¢
Lb\/l+ e'zcoszqﬁ b\/1+ e'zcosz¢ 1+ e'zcoszqﬁ J
(2.1)
where
2 a’-b’
e = . (2.2)

be a parametric representation of a part of an ellipsoid of revolution. The geometry of the ellipsoid of revolution
is studied in detail in (Deakin and Hunter, 2003), therefore the quantities which will be needed in the sequel are

e e ( a’sin ¢ cos A a’sin gsin 4 a’ cos @ W
S¢ (¢1/1) = 4 3 ' fl (23)

3 3

b(1+ e cos z¢); b(1+ e cos 2¢); b(1+ e’ cos 2¢);

It

n
I

|

( a’ cos gsin A a’ cos ¢ cos A OW

§f(¢.l)=§;—k— b\/l+e'zcosz¢,b\/1+e'zcosz¢’ J @4
The unit normal vector and its derivatives are

N (4, 2)=N° = (-cos ¢cos A,—cos ¢sin A,—sin ¢) (2.5)
N_; (¢,4) = N_; = (sin ¢ cos A,sin @sin A,—cos ¢) (2.6)
N_f(qﬁ,ﬂ) = N_; = (cos ¢sin 1,—cos ¢cos A,0) 2.7
N_;¢(¢,ﬂ) = I\I_;¢ = (cos ¢ cos 2,cos ¢sin A,sin #) = —N °© (2.8)
N_; (¢, 1) = N_; = (—sin ¢sin A,sin gcos 1,0) = —N_j tan ¢ (2.9)
N_; (6, 2) = N_; = (cos ¢ cos A,cos ¢sin 1,0) (2.10)
The fundamental quantities of the ellipsoid are

E'(¢)=E" = 2’ (2.11)

b2+ e?cos 2 ¢)°
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F (4)=F =0

(2.12)
. R a’ cos @
G (4)=C =— . . (2.13)
b"(1+e"cos ¢)
a2
L°(¢) = L" = B (2.14)
b(1+e?cos’¢)?
M (g)=M° =0 (2.15)
2 2
N°(g)= N = ——2 4 (2.16)
b\/l + e cos @
From Weingarten equations (Weatherburn, 1995) we have that
e Le —e
N, :_Ees¢ (2.17)
e N ) —e
N L= . s}h (218)
G
Known relations hold for the mean and Gauss curvature of the ellipsoid
. - . 1(L® N
I%(g)=3°" == + (2.19)
2 E° G
. . LEN e
Ke(9)=Kg=—— (2.20)
EG
Now let SP be a parallel surface of the ellipsoid such that
§" i (p, — 0P pp + ) x (Ap —8A, A, + 1) > R :1(4,2) > 5" (4,4) 221)
S'(p,4)=5($,4) — h,N (¢, 2)
It holds that
bl _ TP _ Ze e
s, (¢, 4)=s, =s, -h,N, (2.22)
$"($,A)=5"=5"—h,N°® (2.23)
el _bh _ e e
S, (#.A)=s,, =5, —h,N_ (2.24)
S;(9.2) =5, =5, ~h,N] (2.25)
sP(p.A)=5" =5 —h N (2.26)
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The unit normal vector of the parallel surface passing through point P is

N °(g,4)

NP=N° (2.27)

The fundamental quantities of the parallel surface are (Kiziltug and Tarakeci, 2013)

EP(p)=E" =(@Q-h KI)E"+2h,(h,J°+1)L" (2.28)
FP()=F"  =@-hKS)F +2h,(h,3°+1)M =0 (2.29)
G (¢)=G " =(@Q-hKI)G +2h,(h,J° +1)N° (2.30)
L°(g)=L" =2+ 2h,d°)L° —h K.E® (2.31)
MP(@)=MP"=@0+2h, 3 )M -h,KF =0 (2.32)
N°()=N"=@+2h,J°)N°-h K G* (2.33)

The differences in certain signs are due to the fact that the unit normal vector of the ellipsoid points inwards.
Therefore the vector equation of the parallel surface is written with a minus sign instead of a plus sign.

Now let S” be the normal equipotential surface passing through point P. The value of the normal potential on
this surface is Up. Let a parameterization of a part of the equipotential surface be

—U

§V i (p, — 5P, +B)x (Ay —6A, A, +SA) > R (P, 2) > 5 (4,2)

_ _ (2.34)
$7(p,A)=5"(¢,A) - Sh($)N "(p,4) =5 —ohN"
where
oh: (¢, —% ¢, + P ) > R:¢ - oh(g):6h(s,)=0 (2.35)
It holds that
U —p N P NP o_SP N ¢ N €
s, =s, —oh,N" —ohN "~ =s’-oh N —6hN, (2.36)
57 =§P—6hN =5’ - 6hN® (2.37)
The quantities of the first fundamental form are
EV(4)=E" =(5, .5, ) =(5) ~6n,N°~6nN,5) —6h,N°—6nN) =
= (5),5))~26n(S) N y+6n+6h* (N NJ) =
. . (2.38)

=(s,,s/)+20h

L
-p e 2 —e —e 2
Ee(s¢,s¢>+6h{ e](s,¢,,s¢>+5h¢=

=(s;,s,))+20h

e e

2
—e Ny e T 2 L —e —e 2
c <s¢—hpN¢,s¢>+§h <s¢,s¢>+5h¢=

2

e e

2
=(5",5"y+ 26h —(5°,5°) + 2h_oh L (5°,5°y+on° = (5°,5°y+sh?
- ¢ 79 2] P Ee 479 Ee [ ¢

Ee
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Eventually

[ e\
L
=|(l—hf,Ké)Ee+25hLe+(2hP5h+5h2)[ ]

U

E

e e 2
N |+ 2h, (h,3°+1)L" + oh; (2.39)
E
Since normal equipotential surfaces are surfaces of revolution then

FP(#)=F" =0

(2.40)
G (#)=G" = (57 —6hN 57 - 6hN ) = (57 = (h, + Sh)N ©,57 = (h, + Sh)N ) =
2
—e —e N ) —e —e 2 N ’ —e —e (241)
=<si,s>+2(hp+6h)—e(sl,sl>+(hp+5h) | (5,.8,)
G
Eventually
R 2
N
G" :Ge+2(hp+§h)Ne+(hP+5h)2[ _J (2.42)
G e
A simple expression for the unit normal vector of the normal equipotential surface is
N N U S_¢p . N S_; . N
N (¢)=N" =7i—=sine+N "coses=r—sine+N cose¢ (2.43)
s? ‘se‘
¢ ¢
The angle € (Moritz, 1967) — or normal reduction - can be determined from the following relation
—7)h
cpmym e LTI G R e km (2.44)
7.R

The symbols v, and vy, stand for the value of normal gravity at the equator and poles respectively. The minus

sign is conventional and it is adopted in eq. (2.43). One issue in eq. (2.39) is that the function sh,, is unknown,
therefore it must be determined. It holds that

—U —U —p e e —p e
S, xS, =(s¢ —§h¢N —5hN¢‘)><(Sﬁ - ohN ) =

= (5] x§)) = 6h(5) x N[)=5h, (N°x5")+8h,sh(N°xN’)- (2.45)
~Sh(NJ x57)+6h* (N x N )

— —e e —e e —e —e Ne —e —e Le —e —e
S XS,_(s¢_hPN¢)X(s/’L_hPNﬂ):(S¢XSA)+hPG_e(s¢XSA)+hP_e(S¢Xs/l)+

(2.46)
e (5, x5;)=(1+2h,3° + hJK )5 x5))
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S S N NS (55 % §7) (2.47)
S X =S, + S X | = S = - + —|(S, XS .
[ A ¢ F’Ee [ Ge A PTG Ge [4 A
NexsP ot (5°x§°)x(5°—h N _r (5° % §°) [1+h Ne}s‘e
X3S, = g X5 )XS, =N NS )= g XS X P e |°2 T
VE'G® VE'G® G (2.48)
1 ° \VG*© N°Y_,
= ———|1+h, — (5, x5;)x5;]=- 1+h, —|s;
E'G® VE°® G
e e Ne —e —e —e Ne —e
N“x N = - ————(5] x 5) x §;] = ——5, (2.49)
G E G EG
N_e =p L’ —e —e h Ne—e L’ e | 1+ h N ° —e—}
XS, = S x| S, + S =] - S X + — |S =
¢ A Ee [ A PGe A Ee ¢ PG lJ
(2.50)
Le e —e
= - ?4» hPKG (S¢><S )
e e LeNe —e —e e ,—e —e
N, x N, =———(5,x5,)=K(5,x5,) (2.51)
EG
Hence relation (2.45) becomes
—Uu —Uu e 2 e —e —e e Ne —e —e
S, XS, =(1+2h,J +hPKG)(s¢st)+5h hF,KG+G—e (s¢xsi)+
N NT, L S .
h, {1+h ]s + 6h 6h—s¢+5h[—e+ hPKGJ(s¢xsl)+ (2.52)
e EGGE E
+5h2K;(s‘;xs‘j)
Rearranging terms, the components of the above vector are equal to
§) x 8 =VE'G [(1+2n,3° + h)K)+26n(h,KS +3°)+Sh°KIIN® +
e ‘|—e
+ Sh |\/ {l+ h —]Jr Sh ,—| — (2.53)
Therefore (see eq. (2.13) and (2.16))
[ N © |
5h¢|\/Ge(1+hPeJ+6hcos¢|
G
fan o - : . (2.54)
\/EEGE[(1+2hPJe+h§K§)+2§h(hpK;+Je)+5h2|<;]
Thus
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E'G [(L+2h,3° +h’K:)+26h(h, K +J°)+sh*K:]tan ¢
s VE'G'I )+ 25h(h, K¢ +37) g (255)

¢
|\/_[1+h ]+§hcos¢1|
|

At point P a simpler formula holds since sh(pp) = 0 hence

VE®(@+2h,3°+hiK:)tan ¢
1+h N
+h
PGe

In eq. (2.55) and (2.56) the minus sign to the angle ¢ (see eq. (2.44)) is adopted.

sh, (¢,) = (2.56)

[

I11.  Methodology, quantities of the second fundamental form
For the quantities LY, MY and NV the following second order partial derivatives are needed (see eq. (2.8),(2.9),
(2.36), and (2.37))
—u —p — p p 5e NG NG Ny © N €
sW:sM—éhMN —2§hN —5hN o ~ NN —6h N°—26h N~ 6hN =
—e e Le —e (31)
:s¢¢+(hp+5h—§h¢¢)N +25h¢§s¢

U —p NI NP o_ TP N ¢ N —
S, =5, ~6h,N-6hN? =5 ~6h N'—-6hN =5) —~6h N’ +5hN tan ¢ =
=S_M—hPNM—5h¢Nl+5hN tan¢_s +h, N ° tan ¢—6h¢Nl+5hNitan¢: (3.2)

. N° —
=S, _F[(hp + 6h) tan ¢—5h¢]sl

S, =52 -6hNJ. =5, —h,N —ohN; =55 —(h, +5h)N |, (3.3)
Hence
u u 5, N © L e
L (g)=1L =< ¢¢>_<‘ sin e+ N° coses , +(hy +6h—6h, )N~ +26h, —s,) =

E

:
(3.4)

sin ¢ _, s 26h,sin e L° . _, — .
== <s¢, M>+_—e—e<s¢,s¢>+<N ,s¢¢>cos,s+(hp+6h—5h¢¢)c035

S

4 4

The first inner product is equal to

—e —e 1 —e —e 1 e
(s,.s,,0=—Ws,,s,)), =—E, (3.5)
2 2
Therefore
, E,+4shL .
L = sin & + (L +h, +h-sh, )cos ¢ (3.6)

e

The function dhy, can be found from the derivation of eq. (2.55). The following two derivatives are needed
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EG°+EG®
(\/EeGe)¢ - ¢ (3.7

[ — N © 1 GS N ¢ N;G - N°G;
| Ge[1+hp J+5hcos¢| = ? {1+hp eJ+hp¢—3¢+

(Ge); (3.8)
+§h¢cos¢—§hsin¢

The derivative of eq. (2.55) is

e e e e e 2 e e e 2 e
sh _(E¢G + E G¢)[(1+2hPJ +h, K.)+26h(h,K_ +J )+ oh KG]tang+

2
[ ° 1
2\/EEGE|\/GE{1+ hpNe]+5hcos¢
L G

J

VE'G [(1+2h, 3% +h K )+28h(h, K +J°)+sh’K ], tan ¢

|\/_[1+h J+5hcos¢1|

]
+\/EeGe[(1+2h I°+ hIKg)+25h(h,KS +3°%) + 6h°K e,
|\/_[l+h J+5hcos¢wcos &
i
~{VEG [(L+2h, 3" + h2KS)+28h(h, K +3°)+Sh°K ]tan &}-
[

+

+

Ne NeGe_NeGe
(1+ h, —e]+hp¢—3¢+5h¢cos¢—§hsin @

. 1
G, |
G 2 |

(G°)? |

|
2
\/_[1+ h, J+ Sh cos ¢—} 3.9

]

At point P 8h = 0 hence

2
@+ 2hPJe+hPK;)¢P

( 1
J(E ;G + E'G)tan & cos 5+2EEG95¢|L
[ 2\/EBGE:_\/GT[1+hpz:]-{COSZS J

J .

. . il

e el G¢ Ne N¢G - N G | 2, ¢

E G 1+h, . +hp7+§h cos¢|(1+ 2h, J° +h K, )tan ¢
G

3

(G°)? |

e Ne
G'|1+h, —
G

VE'G [(1+ 2h, 35 + hiK S )+ 26h, (h, Ko+ I%)]tan &
N

\/GT[I-#hP N:]

G

(8

(3.99)

[
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Therefore at point P (setting 6h = 0 to eg. (3.6))

e e
E¢ +45h¢L

L® (4,) = ———F—=—| sin &, + (L°(g,) +h,)cos &, — sh,, (4,)cos ¢, (3.10)
2NE® |,
U U S_; . e —e Ne —e
M~ (¢)=M" = (;—sin ¢ + N cos £,8,, — —[(h, + éh)tan ¢ - 5h¢]sl> =
Se Ge
’ (3.11)
sin ¢ _, _, .
= 77¢5,:8,2+0+M cose+0
Se
¢
But
(angsns s w
—e a“sin gsin A a sin ¢gcos A
S, = T B ,0 (3.12)
b(l+e?cos’¢)2 bl+e’cos’g)?
and
—e —e ( a’sin ¢ cos A a’sin ¢ sin A a’ cos ¢ W
<S¢'S¢M>:<|_ 3 E 3|’
L b(l+e?cos ¢)2 b@l+e’cos ¢)2 b(l+e’ cos 2(/ﬁ)ZJ
(3.13)
2 . . 2 .
( a“ sin ¢sin 4 a sin g cos A
| ¢ - ¢ _ob=o
b(l+e?cos’¢)2 b@l+e’cos’ g)?
From the above relation and eq. (2.15) we have that
M uo_ 0 (314)
u _ U S_¢ . e —e e
N (¢)=N" =(—sin e+ N cose,s, —(h, +5h)N )=
s,
sin ¢ —e —e sin ¢ —e e e —e e e
=7 <S¢'Su>_(hp+5h)T<S¢’NM>+<N 8, )¢c08 & —(h, +6h)(N "N )cos &
5 55|
(3.15)
—e —e ( a’ sin ¢ cos A a’sin ¢sin A a’ cos @ W
<S¢,SM>=<* 317 i’ i’
b(Ll+e’cos’¢)? b(l+e’cos’g)2 b(l+e’cos’g)? (3.16)
a’ cos ¢ cos A a’ cos ¢sin A W a’sin ¢ cos ¢
| 2 2 & 2 2 00 =- 2 12 2 2
L b\/l+ e'“cos ¢ b\/l+ e cos’ ¢ J b"(1+e" cos”¢)
2 2
e a 1 a
S¢ - 2 2 s - 3 (3'17)
b \{(1+e"cos” ¢) ) , -
b(1+e'cos ¢)?
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3

<§;,_~:7;) _ 2a‘lsin 2¢C052¢ : b(l+e” :Osz¢); _ a’sin ¢ cos ¢ ~ NCtn g (3.18)
s, b"(1+ e cos” ¢) a b\/(1+ e’ cosz¢$)
In addition
e e a’sin ¢cos A a’sin gsin A a’cos @ W
(s, N0 =( - 3 3’ 3
bl+e?cos’¢)2 bl+e’cos’¢)’ b(l+e’cos’g)? (3.19)
. a’sin ¢ cos ¢
,(cos ¢ cos A,cos gsin 4,0)) = - 3
b(l+e’cos’¢)?
o 3
(s, ’_’ju> _ a’sin ¢ cos ¢ . b(1+e” iosz(ﬁ)z = —sin ¢ cos ¢ (3.20)

S

¢ b(l+ e cosz¢)5

(N

e

I\T; y = ((-—cos ¢cos A,—cos ¢gsin 1,—sin ¢), (cos ¢cos A,cos gsin 1,0)) =

(3.21)
=—cos "’ @
From eq. (3.16), (3.17), (3.18), (3.19), (3.20) and (3.21) we have eventually that
NY = =N °tan psin ¢ + (h, + sh)sin ¢ cos ¢sin ¢ + N ‘cos & + (h, + §h)cosz¢cos € =
= N‘(cos ¢ — tan ¢sin &) + (h, + oh)(sin ¢ cos ¢sin & + cos 2 ¢ cos &)
(3.22)
After some manipulations, at point P the following relation holds
N (#,) =N e(;zﬁp)(cos g, —tan ¢, sin ¢_) + h_(sin ¢, cos ¢ sin &, + cos 2¢p Cos &,) = (3.23)

=N e(¢F,)(cos g, —tan ¢, sin ¢,) + h_ cos ¢, cos( ¢, — &)

IV.  Results, normal vertical gradient at point P
The following two tables contain all the necessary geometrical quantities for the ellipsoid and the normal
equipotential surface U = Up. The quantities which are related to the results of the paper are in Table No 2.

4 2 .
a . e'sin 2
E* 2 2 2 3 Ee" 3E 2 ¢;
b"(1+e" cos " ¢) l+e"cos ¢
F° 0 F, 0
4 2 2 .
a cos . . €' sin 2
G* - - ¢2 G% | -2G°tan ¢+G - f
b"(1+ e cos " ¢) l+e'cos ¢

a’ 3be *?
L® - L%, —E1+ e’ cos * 4 sin 2¢
= 2a
b1+ e cos’¢)?
M® 0 M°, 0

azcoszqﬁ

e’ sin 2¢

Ne
21+ e'’ cos 2(;5)

N | —2N“tan ¢ + N°

b\/1+ e’ cos’ ¢

Table No 1: Fundamental quantities of the ellipsoid and their first derivatives
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The quantities in Table No 1 are necessary for the expression of the quantities in Table No 2.

U
B pe) (L-hZKE)E (4,) + 2h, (h,3°(4,) + DL (4,) + 67 (4,)
FU(€0P) 0
2
v e e Ne
G (ve) G (¢,) +2h,N (¢P)+h§( J
VG ° .
u E, +45h,L’
L™ (¢e) — =" sin &, + (L°($,) + h,)cos &, — S, (4,)cos ¢,
2 #o
Mllj((/’P) 0
N"(ve) N e(¢P)(cos g, —tan ¢, sin £,)+ h_ cos ¢, cos( ¢, — &)
—y.)h
g(op,np) _ & nya) Esin 24, R = 6371 km
h,(p) VE®(@+2h,3° +h K:)tan ¢
Ne
1+ hPGT
2
ONyy(iop) ( )
‘(EG +E"G;)tan £ cos 5+2E8Geg¢‘ ., .
oh,, () l . N L L+2h, 37+ hoKQ),
| 2VE'G® |\/GE[1+hpNe]|coszg |
t SRR
I— e e e e e —|
e el G¢ N° NwG - N Ga) | e 2., ¢
EG | 1+h, e]+hp3+5h¢cos¢|(1+2th +h K )tan ¢
L2\/(3e G G°)? |

2

Ne
G1+h, —
G

)+ 20h (h K¢
Ne
Ge]

Table No 2: Fundamental quantities of the normal equipotential surface U = Up at point P.

[

+J3%)]tan ¢

VE'G[(1+2h, 3] +h K
+
\/Ge[1+ h,

[

The fundamental quantities of the normal equipotential surface U = Up at point P contain the
fundamental quantities of the ellipsoid. Let Q be the projection poin of point P along the vertical line to the
ellipsoid. From the form of the relations in Table No 2 it is evident that as the geometric height tends to zero the
fundamental quantities of the aforementioned surface at point P tend to be equal to the fundamental quantities of
the ellipsoid at point Q. The most complicated fundamental quantity is LY since it contains the quantity 3h,,.

For small elevation hp up above the ellipsoid the following formula is adopted (Moritz, 1967)

27(4,) 3G M )

y($..h,) =7 (4,) - @+ f+m-2f"sin°¢,)h, + ——=h; 4.1)
a
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where G is the gravitational constant, Mg is the Earth’s mass, f is the flattening of the ellipsoid, m is given by

m = 4.2

where o is the Earth’s mean angular velocity and

ay, cos 2¢P +by, sin 2¢P

7(4,) = (4.2a)
\/az cos * P + b’ sin 7/

The normal vertical gradient of gravity at point P is equal to

oy 2 u

— = -2w _27(¢p!hp)‘] (¢p) (43)

oh |,

where JY is the mean curvature of the normal equipotential surface U = Up at point P. The above relation as a
function of geodetic coordinates is very complicated. Relation (4.3) can be written as

oy
oh

(4.4)

u

, L’c” + E'N"
=-20" -2y(¢,,h,) 2 E'G

P

If the axis “a” is increasing and “b” is constant (see Table No 1 and Table No 2) then the effect of the geometry
of the ellipsoid on VGNG becomes more pronounced since the denominator in the expression of the mean
curvature (eg. (4.4)) depends strongly on the geometry of the ellipsoid (see Table No 1 and Table 2).

V.  Conclusions

The VGNG is an interesting quantity both from a practical and a theoretical point of view. In this
theoretical study of VGNG the geometry of the normal equipotential surfaces was investigated. This geometry
was split into two parts: The first part was the purely geometric part and was represented by the surface
geometry of the ellipsoid i.e. its fundamental quantities, its mean and Gauss curvature. The second part was the
physical part which was represented by the normal reduction (angle €) which is the angle between the gravity
vector at a point P (located on the Earth’s physical surface) and the vertical line to the ellipsoid passing through
the same point.
This investigation has shown that the fundamental quantities, the mean and Gauss curvature of the normal
equipotential surfaces are very complicated functions of geodetic coordinates. This results into an equivalent
complexity of the VGNG as a function of geodetic coordinates. This is a kind of unfortunate event since this
kind of formula is not suitable for calculations.

Finally it was found that the VGNG can be strongly affected by the geometry of the ellipsoid if the
axles of the ellipsoid are significantly different in magnitude, i.e. axis “a” is much greater that axis “b”.
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